16 research outputs found

    Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network Methods for 3D Robot Vision

    Full text link
    We introduce Hybrid Bayesian Eigenobjects (HBEOs), a novel representation for 3D objects designed to allow a robot to jointly estimate the pose, class, and full 3D geometry of a novel object observed from a single viewpoint in a single practical framework. By combining both linear subspace methods and deep convolutional prediction, HBEOs efficiently learn nonlinear object representations without directly regressing into high-dimensional space. HBEOs also remove the onerous and generally impractical necessity of input data voxelization prior to inference. We experimentally evaluate the suitability of HBEOs to the challenging task of joint pose, class, and shape inference on novel objects and show that, compared to preceding work, HBEOs offer dramatically improved performance in all three tasks along with several orders of magnitude faster runtime performance.Comment: To appear in the International Conference on Intelligent Robots (IROS) - Madrid, 201

    Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

    Full text link
    This paper introduces Diffusion Policy, a new way of generating robot behavior by representing a robot's visuomotor policy as a conditional denoising diffusion process. We benchmark Diffusion Policy across 11 different tasks from 4 different robot manipulation benchmarks and find that it consistently outperforms existing state-of-the-art robot learning methods with an average improvement of 46.9%. Diffusion Policy learns the gradient of the action-distribution score function and iteratively optimizes with respect to this gradient field during inference via a series of stochastic Langevin dynamics steps. We find that the diffusion formulation yields powerful advantages when used for robot policies, including gracefully handling multimodal action distributions, being suitable for high-dimensional action spaces, and exhibiting impressive training stability. To fully unlock the potential of diffusion models for visuomotor policy learning on physical robots, this paper presents a set of key technical contributions including the incorporation of receding horizon control, visual conditioning, and the time-series diffusion transformer. We hope this work will help motivate a new generation of policy learning techniques that are able to leverage the powerful generative modeling capabilities of diffusion models. Code, data, and training details will be publicly available

    Representing, learning, and controlling complex object interactions

    No full text
    We present a framework for representing scenarios with complex object interactions, where a robot cannot directly interact with the object it wishes to control and must instead influence it via intermediate objects. For instance, a robot learning to drive a car can only change the car’s pose indirectly via the steering wheel, and must represent and reason about the relationship between its own grippers and the steering wheel, and the relationship between the steering wheel and the car. We formalize these interactions as chains and graphs of Markov decision processes (MDPs) and show how such models can be learned from data. We also consider how they can be controlled given known or learned dynamics. We show that our complex model can be collapsed into a single MDP and solved to find an optimal policy for the combined system. Since the resulting MDP may be very large, we also introduce a planning algorithm that efficiently produces a potentially suboptimal policy. We apply these models to two systems in which a robot uses learning from demonstration to achieve indirect control: playing a computer game using a joystick, and using a hot water dispenser to heat a cup of water. Keywords: Robotics, Task representation, Task learning, Markov decision processUnited States. Defense Advanced Research Projects Agency (D15AP00104)National Institutes of Health (U.S.) (R01MH109177

    Distance Minimization for Reward Learning from Scored Trajectories

    No full text
    Many planning methods rely on the use of an immediate reward function as a portable and succinct representation of desired behavior. Rewards are often inferred from demonstrated behavior that is assumed to be near-optimal. We examine a framework, Distance Minimization IRL (DM-IRL), for learning reward functions from scores an expert assigns to possibly suboptimal demonstrations. By changing the expert’s role from a demonstrator to a judge, DM-IRL relaxes some of the assumptions present in IRL, enabling learning from the scoring of arbitrary demonstration trajectories with unknown transition functions. DM-IRL complements existing IRL approaches by addressing different assumptions about the expert. We show that DM-IRL is robust to expert scoring error and prove that finding a policy that produces maximally informative trajectories for an expert to score is strongly NP-hard. Experimentally, we demonstrate that the reward function DM-IRL learns from an MDP with an unknown transition model can transfer to an agent with known characteristics in a novel environment, and we achieve successful learning with limited available training data
    corecore